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Abstract

One method for deducing the strength of an acoustic source distribution from measurement of the
radiated field involves the inversion of the matrix of frequency response functions relating the field
measurement points to the strengths of a number of point sources used to represent the source distribution.
In practice, the frequency response function matrix to be inverted may very often be ill-conditioned. This
ill-conditioning will also often result in an ill-posed problem and thus regularization algorithms are used to
produce reasonable solutions. For this purpose, Tikhonov regularization has been applied, and generalized
cross-validation (GCV) has been introduced as an effective method for determining the proper amount of
regularization without prior knowledge of either the source distribution or the contaminating errors. In the
present work, the emphasis is placed on the relationship between the spatial resolution of the reconstructed
source distribution and the small singular values of the frequency response function matrix to be inverted.
However, the use of Tikhonov regularization often suppresses the effect of small singular values and these
are in turn often associated with high spatial frequencies of the source distribution. Thus, the process of
regularization produces a useful estimate of the acoustic source strength distribution but with a limited
spatial resolution. Furthermore, in the field of Fourier acoustics, the spatial resolution of the reconstructed
source distribution is usually limited by the wavelength of the radiation. This paper expresses the
relationship between estimation accuracy, spatial resolution, noise-level and source/sensor geometry, when
a range of inverse sound radiation problems are regularised using Tikhonov regularization with GCV. The
results presented form the basis of guidelines that enable the reconstruction of acoustic source strength with
a resolution that is finer than the intrinsic half-wavelength limit.
r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

An important inverse problem in the field of acoustics is that of reconstructing the strengths of
a number of sources given a model of the transmission paths from the sources to a number of
sensors at which measurements are made. In dealing with this kind of the problem, an approach
based on an assumed source model has shown some promise [1–4]. This technique uses singular
value decomposition (SVD) as a primary analysis tool. The usefulness of this decomposition stems
from the fact that SVD can be interpreted in terms of ‘‘spatial frequency’’. In the transformation
process associated with SVD, it has been demonstrated [1,2] that the transformed pressures and
source distribution are related by single real numbers only (i.e., the singular values) and
furthermore, that very often the large singular values are associated with the ‘‘low spatial
frequencies’’ whilst the small singular values correspond to the ‘‘high spatial frequencies’’.
Therefore, the resolution and the accuracy of the reconstruction produced by such inversion
methods will be highly dependent on how these small singular values are treated during the
inversion process.
Meanwhile, Fourier-based methods can also be used in place of SVD in dealing with the same

types of inverse source problem. Here, it is usually assumed that the spatial resolution in a
reconstructed source distribution is limited by the wavelength of radiation, since the resolution
produced by the Fourier-based method is inversely proportional to the bandwidth of the field
data. In the field of digital image processing which makes use of Fourier-based methods, however,
it has been proposed [5] that, in principle, the entire wavenumber spectrum can be deduced from
knowledge of the spectrum over a limited range of wavenumbers. In other words, under certain
conditions, an inverse method applied to farfield data, is capable of producing greater resolution
than the half-wavelength limit defined by the ‘‘Rayleigh criterion’’ [6,7] from classical optics. This
is referred to as ‘‘super-resolution’’ of the reconstructed image distribution. (For a summary of the
literature relating to super-resolution, see Ref. [7].) Even though practical examples of the use of
these techniques are rare and although significant improvement in the resolution of the
reconstructed image can be expected only with very low-noise levels and careful computation [8],
it is valuable to examine the equivalent acoustical inverse problem of inverting farfield data with
contaminating errors in order to obtain a detailed image of the source distribution by means of
the SVD.
When the approach based on the SVD is applied to inverse source problems, regularization is

usually imposed to avoid unstable solutions dominated by the errors associated with small
singular values. In Refs. [2–4], some regularization methods, including the determination of the
proper regularization parameters without prior information, have been shown to lead to the
successful reconstruction of acoustic source distributions. Through the application of the discrete
Picard condition [9,10] as an important criterion for good reconstruction, it can also be shown [4]
how the regularization parameters work in reconstructing acoustic source strengths. These
applications of regularization methods to ill-posed acoustical inverse problems provide
considerable improvement in the resolution and in the accuracy of reconstruction.
However, even though the methods for choosing proper regularization parameters will work

well, the use of Tikhonov regularization [11] often suppresses the effect of small singular values in
the acoustic frequency response function matrix to be inverted. These are in turn often associated
with high spatial frequencies of the source distribution. This suppression, or smoothing, effect can
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produce a useful estimate of the acoustic source strength distribution but with limited spatial
resolution.
Therefore, this paper will firstly investigate further the use of GCV [12,13] for providing an

effective method for determining regularization parameters in acoustical inverse problems. The
paper will also explore the relationships between estimated accuracy and spatial resolution, noise-
level and source/sensor geometry when a range of inverse sound radiation problems are treated
using Tikhonov regularization with GCV. This enables guidelines to be proposed for source/
sensor geometries that produce resolution of acoustic source strengths beyond the half-
wavelength limit, although it is found in practice that very low signal-to-noise ratios are required
in making measurements in the farfield of acoustic source distributions.

2. Regularization for the reconstruction of acoustic source strength

2.1. Introduction

An approach to inverse source problems in acoustics has been fully described in Refs. [1,2].
Here, consider a simple free field radiation problem associated with a vibrating planar surface
where no other sources or obstacles exist in the exterior region. It is assumed that the real source
distribution produces acoustic pressures measured at a finite number N of receiver positions where
the complex pressures detected comprise the elements of the vector #p: Furthermore, it is assumed
that the source strength distribution is considered to consist of the same number of discrete
elements as sensors (where, the source strengths comprise a complex vector q). Use of the simple
least squares method based on the SVD shows that the reconstructed source strength vector q is
given by [2,4]

q ¼ G�1 #p ¼ VS�1UH #p ¼
XN

i¼1

uHi #p

si

vi: ð1Þ

It should be noted that this analysis is conducted in the frequency domain, i.e., for example #p

represents a complex vector of Fourier transforms of the measured acoustic pressures. The
acoustic frequency response function matrix G (which is assumed here to be a square matrix) can
be expressed in the form

G ¼ USVH ¼
XN

i¼1

uisiv
H
i : ð2Þ

The matrices U and V contain the left and the right singular vectors (ui and vi) of the matrix G and
the superscript H denotes Hermitian transpose. The matrix S is the diagonal matrix whose
elements are the singular values si:
In practice, however, since ill-conditioning of the matrix G will often result in an ill-posed

problem, successful reconstruction of acoustic source distribution cannot always be guaranteed by
using only the simple least squares method. Therefore, regularization algorithms are often used to
produce reasonable solutions to discrete ill-posed problems. Application of Tikhonov
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regularization shows that Eq. (1) can be written as [2,4]

qR ¼ VS�1
R UH #p ¼

XN

i¼1

s2i
s2i þ b

� �
uHi #p

si

vi; ð3Þ

where the subscript R represents the regularized solution and b denotes the chosen Tikhonov
regularization parameter. It is well known [2–4] that if b is determined properly the ‘blow-up’ in
reconstruction caused by the inversion of very small singular values can be prevented. Meanwhile,
determination of the appropriate regularization parameter requires knowledge of either the error
contamination or the source distribution, but it is very difficult to obtain detailed estimation of
these in practical applications. Generalized cross-validation (GCV) has thus been introduced since
the technique does not require prior knowledge of the source strength distribution or of the
contaminating noise. In such cases, the proper regularization parameter bGCV is determined by
minimizing the GCV function defined by

bGCV ¼ min
b

½GCV ðbÞ� ¼ min
b

ð1=NÞjjfI� BðbÞg#pjj2

½ð1=NÞ tracefI� BðbÞg�2

� �
; ð4Þ

where the influence matrix BðbÞ is given by BðbÞ ¼ GðGHGþ bIÞ�1GH [2,3].
However, in order to apply the GCV technique to real-world applications, it is firstly necessary

to demonstrate that GCV can determine the proper amount of regularization for a wide range of
inverse sound radiation problems. In particular, contaminating errors in the measured field data
represented by #p are inevitable in practical applications and hence Tikhonov regularization by the
use of GCV is required to filter out the influence of the errors. In Eq. (1), for example, if the
magnitude of juHi #pj is much greater than the associated singular value si as a result of
contamination of errors, q will be dominated by the terms in the sum corresponding to the
smallest singular value. Therefore, it is very important that, in order to reconstruct the source
strength distribution with accuracy, the effects of the contaminating noise on the role of the
magnitude of juHi #pj in Eq. (1) must be understood and analyzed.
These effects are described by the discrete Picard condition [5] which states that the magnitude

variation of juHi #pj must decay to zero faster than the associated singular value si if #p is assumed to
be the true complex pressure without contamination. In other words, if the magnitude variation of
juHi #pj does not satisfy the discrete Picard condition, this reconstruction will suffer from the large
perturbations caused by small perturbations of #p: In practice, it is easy to show [4] by the use of
the discrete Picard condition that the efficiency of the Tikhonov regularization method depends
on the proper choice of the regularization parameter b that produces a fair balance between the
perturbation error and the regularization error. However, even though the application of the
discrete Picard condition is more useful in practice than the condition number for investigating
the efficiency of regularization methods, it also demonstrates that the resolution of source strength
and the accuracy of reconstruction can only be estimated roughly by comparison between the
magnitude variation of the regularized value of juHi #pj (i.e., juHi #pjðs2i =s

2
i þ bÞ) in Eq. (3)) and the

variation of the associated singular value si: The method cannot provide directly the qualitative
and quantitative insight into the performance of the regularization method based on the actual
reconstruction result.
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Hence, when detailed source strengths are assumed to be known, the estimation of the mean
squared error (MSE) between the true source strength distribution and Tikhonov regularized
solutions for all valid regularization parameters is introduced to evaluate the effectiveness of
GCV. Here, the regularization parameter bMSE derived from the estimation of MSE for Eq. (3)
corresponds to the minimum of the MSE function, which can be written as

bMSE ¼ min
b

½MSEðbÞ� ¼ min
b

½E½ðqR � %qÞHðqR � %qÞ��; ð5Þ

where %q represents the known vector of source strengths. Consequently, by comparing two
regularization parameters bMSE and bGCV determined by two different methods, the performance
of GCV can be investigated in acoustical inverse problems.

2.2. Illustrative reconstructions by means of GCV

In order to illustrate better these points, it is useful to present some results of a simple
simulation of an acoustical inverse problem. Firstly, consider a linear sensor array depicted in
Fig. 1. It is assumed that only one point cylindrically radiating monopole source with unit
strength is located at the centre of the source line array consisting of 11 source models with equal
spacing rss: The complex pressures at the distance rms are assumed to be measured with the
same number of sensors as sources in the assumed model source array. The sensor array also has
equal spacing rmm which is also assumed here to be equal to rss: Measurement noise was added
to the ‘measured’ acoustic pressures and 500 random trials were used. The two-dimensional
Green function is given by the zero order Hankel function. This can also be used to define the
frequency response relationship between the spatial Fourier transform of the acoustic pressure
and the spatial Fourier transform of the associated source distribution. The Green function can be
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written as

GðkrÞ ¼
oro

2
HoðkrÞ; ð6Þ

where ro is the density and the wavenumber k ¼ o=co where o is the angular frequency and co is
the sound speed. The Hankel function HoðkrÞ ¼ JoðkrÞ � jNoðkrÞ; where JoðkrÞ and NoðkrÞ are the
zeroth order Bessel and Neumann functions, respectively.
Fig. 2 illustrates the variation of the magnitude of GCV ðbÞ and MSEðbÞ for all valid

regularization parameters. Also shown is the reconstructed source strength distribution produced by
Tikhonov regularization with GCV (at b ¼ bGCV ) for illustrative acoustical conditions, in other
words, a non-dimensional source spacing rss=l where l denotes the acoustic wavelength, a level of
noise contamination Er ¼ jej=jð #p � eÞj where e is the amplitude of the assumed noise, and a distance
between the sensor array and the source array rms: When the results for bGCV are compared with the
value of bMSE ; it seems clear that GCV provides reasonable regularization parameters in the cases
investigated here. This is, of course, achieved without any prior information regarding either the
acoustic source strength or the contaminating measurement noise.
In order to become more sure of the use of the GCV technique in practical applications, some

numerical simulations with the particular three-dimensional geometry depicted in Fig. 3 have also
been performed. This geometry models a planar vibrating surface radiating to an acoustic field.
Here, only one point monopole source located at the centre of the planar source array (where 9� 9
source and sensor models are used) is assumed to have unit strength. The inter-sensor spacing rmm is
adjusted to be equal to the inter-source spacing rss and the sensor array plane is rms away from the
source array plane. Measurement noise was also simulated by running 500 random trials.
As can be seen in Fig. 4, in this sensor/source arrangement, GCV still provides proper

regularization parameters compared with bMSE : In addition, evidence for this has already been
seen and resulted in producing useful information related to the source distribution in a limited
number of practical acoustic problems [2–4]. However, as can be seen in the cases investigated
here (as well as that of Fig. 2), successful reconstruction cannot not always be produced even
though the GCV function has determined an appropriate regularization parameter bGCV : For
example, in the cases of Figs. 2 (a), (b) and (d) with the linear sensor array and Figs. 4(a), (b) and
(d) with the planar type sensor array, very poor reconstructions of source strengths are
demonstrated. In other words, even when GCV chooses the appropriate degree in a Tikhonov
regularization problem, good resolution and accuracy of reconstructed source distribution always
cannot be guaranteed. Therefore, it is also valuable to investigate the resolution and the accuracy
of reconstruction of the source distribution and its relationship to the acoustic conditions, for
example contaminating noise level and sensor/source geometry, when dealing with a range of
inverse source problems by means of GCV.

3. Spatial resolution limits for the reconstruction of acoustic source strength by inverse methods

3.1. Introduction

As described in the previous section, it is important to realize that small singular values
associated with high spatial frequencies contain the fine detail, high spatial resolution information
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Fig. 2. Variation of the magnitude of GCV ðbÞ (solid line) and MSEðbÞ (dotted line) for all valid regularization

parameters (’: bGCV ; �: bMSE) and the reconstructed source strength distribution produced by the Tikhonov

regularization when b ¼ bGCV for the linear sensor and source array: (a) krss ¼ p=16 ðl ¼ 3:2 mÞ; Er ¼ 0:5; rms ¼ 0:5l;
(b) krss ¼ p=2 ðl ¼ 0:4 mÞ; Er ¼ 0:5; rms ¼ 10l; (c) krss ¼ p ðl ¼ 0:2 mÞ; Er ¼ 0:5; rms ¼ 0:5l; (d) krss ¼ p ðl ¼ 0:2 mÞ;
Er ¼ 0:5; rms ¼ 10l; (e) krss ¼ 2p ðl ¼ 0:1 mÞ; Er ¼ 0:5; rms ¼ 10l:
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about the source. It is therefore necessary to understand spatial resolution in terms of the SVD
and to establish quantitatively the extent to which the inverse method can adequately reproduce
the small detail in the objects of interest.
In the field of optics, the resolution is defined by the minimum separation distance between

distinguishable point objects, or the degree to which closely spaced point objects in an image can
be distinguished from one another. It also is widely known in the field of classical optics [6,7] that
the spatial resolution of the reconstructed image is limited by the wavelength of the radiation. In
other words, the spatial resolution of the reconstructed source image is inversely proportional to
the bandwidth of the field data. According to this criterion, which is known as the Rayleigh
resolution criterion, two point sources can just be resolved if they are separated in an image by
one half of the wavelength of the radiation. However, in the field of acoustics, super-resolution
can be achieved by making measurements in the near field of a source and this has led to the
development of the particular imaging technique known as Nearfield Acoustical Holography
(NAH).
It has long been appreciated [14,15] in NAH that measurements undertaken in the near field of

a source are capable of producing far greater resolution of the source distribution than that
predicted by the classical Rayleigh criterion. However, since evanescent waves decay rapidly with
the distance from the source, in order to identity these non-propagating waves associated with
high spatial frequencies in the source distribution, radiation fields must be measured close to the
source surface with sufficient dynamic range. Moreover, it is also well known in NAH that the
spatial resolution that can be achieved is also a function of the level of contaminating noise. It has
been shown, as a guideline for resolution of reconstruction by NAH, that the minimum resolvable
source spacing Rss is a function of the noise level and the position of the sensor array and is given
by [14,15]

RssE20prms=ðD ln 10Þ: ð7Þ
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Fig. 4. Variation of the magnitude of GCV ðbÞ (solid line) and MSEðbÞ (dotted line) for all valid regularization

parameters (’:bGCV ; �: bMSE) and the reconstructed source strength distribution produced by the Tikhonov

regularization when b ¼ bGCV for the planar sensor and source array: (a) krss ¼ p=16 ðl ¼ 3:2 mÞ; Er ¼ 0:5; rms ¼ 0:5l;
(b) krss ¼ p=2 ðl ¼ 0:4 mÞ; Er ¼ 0:5; rms ¼ 10l; (c) krss ¼ p ðl ¼ 0:2 mÞ; Er ¼ 0:5; rms ¼ 0:5l; (d) krss ¼ p ðl ¼ 0:2 mÞ;
Er ¼ 0:5; rms ¼ 10l; (e) krss ¼ 2p ðl ¼ 0:1 mÞ; Er ¼ 0:5; rms ¼ 10l:
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Here, the dynamic range D that may characterize the noise level is defined by D ¼ 20 log10ðM=EÞ;
where, M is the maximum amplitude of the measured acoustic pressure and E is the amplitude of
the noise. According to Eq. (7), good resolution will be obtained by having a precise measurement
system with large dynamic range D and by measuring as close to the sources as possible.
This analogy for the spatial resolution may also apply to the more general formulation

provided by the inverse method based on the SVD. The reason for ill-conditioning can be
interpreted in terms of small singular values associated with high spatial frequencies.
Furthermore, as described in Section 1, if it is possible at least in principle to produce super-
resolution from farfield data [5], it should also be possible to achieve this by using inverse methods
based on the SVD.

3.2. Resolution limits for the reconstruction in the near field by the inverse method

Firstly consider how the spatial resolution can be quantified. In this paper, as a measure of the
spatial resolution, the Abbe distance [16,17] associated with the point spread function (PSF) of an
imaging system has been adopted. In Fig. 5, the Abbe distance RA is defined by the half-amplitude
of the central peak of the image plane PSF which, in the two-dimensional case, is given by
sinðkxÞ=kx: The optical analogy presented in the above references can be used in connection with
acoustic radiation problems. When the reconstructed acoustic source distribution is assumed to be
equivalent to the discrete image plane PSF, the Abbe distance RA; as the resolution criterion of
reconstruction for acoustic source strengths, can be defined in discrete form as

RA ¼ 2nADx; for the value of nA satisfying j %qnA
jp0:5jq0j; ð8Þ

where, as illustrated in Fig. 6, the magnitude of q0 represents the peak value of the reconstructed
acoustic source strengths and %qnA

is produced by taking an average with qnA
and q�nA

: In the case
of three-dimensional problem, for example the geometrical arrangement of sensors and sources
shown in Fig. 3, the average value %qnA

will be taken with four reconstructed source strengths
around q0: In general, the reconstructed source distribution is narrow and elongated when RA=Dx

is small (the minimum RA=Dx is 2). As RA=Dx becomes larger, the ‘‘flatter’’ and ‘‘broader’’ the
distribution of acoustic source strength becomes.
Fig. 1 shows the linear sensor array and source array (which has only one point monopole

source with unit strength located at the centre of the line source array) which has been used to
estimate spatial resolution limits in terms of the Abbe distance. Measurement noise has been
added to the true complex pressures in order to simulate measured values. The sensor array has
equal spacing rmm which is assumed here to be equal to inter-source spacing rss: All the
reconstructions of source strength have been produced by using the Tikhonov regularization
method and regularization parameters have been determined by GCV.
Firstly, Fig. 7 shows the variation of the condition number with respect to the geometrical

arrangement of sensors and sources (i.e., non-dimensional source spacing rss=l and non-
dimensional distance rms=rss between the sensor array and the source array). When the sensor
array is placed in the field close to the source surface, the conditioning of the frequency response
function matrix G is obviously improved.
Figs. 8(a)–(d) show that the variation of the Abbe distance RA for a wide range of non-

dimensional source spacing rss=l and signal to noise ratio Er at different sensor positions rms (i.e.,
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rms is made equal to rss; 5rss; 10rss and 103rss). In Fig. 8(a), when rms equals rss (i.e., the sensor
array is placed in the field very close to the source surface), the spatial resolution of the source
strength distribution is far greater than the half-wavelength resolution limit except in regions of
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very low frequency and very high noise level. However, as the sensor array is deployed far
from the source surface (i.e., as rms is increased), very poor reconstruction of the source
strength distribution is found for a wide range of acoustic conditions even for very small
noise levels. Hence, similar to the resolution criterion for NAH given by Eq. (7), when using
the inverse method based on the SVD with the linear sensor array, the measurement must be
undertaken as close as possible to the sources in order to improve the conditioning of the
matrix G.
From the practical point of view, exploring these relationships has also been performed with the

complex sensor/source geometry depicted in Fig. 3. Only one point monopole source located at
the centre of the 9� 9 planar source array assumed to have unit strength and the same conditions
as for the linear sensor array have been used for measurement noise and the distances between the
sensor array and the source array. Also, as shown in Fig. 9, the matrix G to be inverted will be
well conditioned when measurements are undertaken close to the source array. Similarly, as
shown in Figs. 10(a)–(d), when the measurements can be undertaken in the near field as close to
the sources as possible, it is clear that excellent resolution of reconstruction can be produced by
Tikhonov regularization with the GCV technique.

3.3. Reconstruction from farfield data and limits to spatial resolution

Similarly to NAH, it therefore appears from the above examples that, in order to guarantee
super-resolution, it is necessary to perform measurements in the near field as close to the sources
as possible. In practice, however, if the sensor array is placed close to the source surface, the
acoustic pressure at the measurement position may be modified by scattering, reflection or
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resonance caused by the small gap between the source surface and the sensor array. Otherwise, as
shown by Fig. 8(d), when the sensor array has been completely deployed to the farfield for all
measured wavelengths (i.e., rms equals to 103rss), very poor reconstruction of the source strength
distribution is produced over the whole range of acoustic conditions except for those with very
tiny noise level. Also, in the more practical case of the three-dimensional sensor and source array
(Fig. 3), very similar resolution limits at rms ¼ 103rss (Fig. 10(d)) can be found to that given by the
linear sensor array. However, it is already well established [2,18] that it is possible to improve the
conditioning of the frequency response function matrix G, even when acoustic source strengths
are reconstructed from measurements of farfield data.
Consider the hemi-cylindrical sensor array in the farfield in Fig. 11. For the line source array,

the same number of sources with the equal spacing rss as sensors has been modelled. In such cases,
it follows from the Rayleigh integral and the appropriate two-dimensional Green function (given
by the asymptotic form of the zero order Hankel function) that the farfield acoustic pressure can
be expressed as a spatial Fourier transform of the associated source distribution. This relationship
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can be written as [19]

pðrÞ ¼ GCðkRÞ
Z

N

�N

uzðxÞej
#kxdx; ð9Þ

where GCðkRÞ ¼ oroe
�jðkR�p=4Þ=

ffiffiffiffiffiffiffiffiffiffiffiffi
2pkR

p
is valid for kRb1 (here, the wavenumber k ¼ o=co;

where o is the angular frequency, co is the sound speed and ro is the density). uzðxÞ is the velocity
normal to the x-axis and the wavenumber variable #k ¼ k sin y: Sensors at the radial distance R

can be spaced at equal increments of #k ¼ k sin y and, as observed previously [2,4], this hemi-
cylindrical sensor array results in a frequency response function matrix to be inverted that has unit
condition number (i.e., the problem becomes optimally conditioned) when rss=l ¼ 0:5; irrespective
of the number of sources assumed.
In order to consider how the sensor array can be optimally spaced, it is firstly necessary to

understand the relationship between the spatial Fourier transform of the farfield data and the
spatial Fourier transform of the source distribution. Here, if the source distribution in Eq. (9) is
assumed to be sampled at regular intervals of rss along the x-axis, using the properties of the Dirac
delta function, the sampled velocity distribution us;zðxÞ can be expressed in the form [20]

us;zðxÞ ¼ uzðxÞ
XN

n¼�N

dðx � nrssÞ: ð10Þ

The Fourier transform of the source strength distribution is given by

Uzðe�j #krssÞ ¼
Z

N

�N

us;zðxÞe�j #krss dx ð11Þ
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and thus when the velocity distribution is sampled

Uzðe�j #krssÞ ¼
Z

N

�N

uzðxÞ
XN

n¼�N

dðx � nrssÞ

" #
e�j #krss dx; ð12Þ

this therefore reduces to

Uzðe�j #krssÞ ¼
XN

n¼�N

uzðnrssÞej
#knrss ; ð13Þ

where the discrete variable uzðnrssÞ is defined by uzðnrssÞ ¼
R
N

�N
uzðxÞdðx � nrssÞ dx:

Similarly, the discrete Fourier transform of a source distribution of a finite length can be
deduced (see, for example, Ref. [20] for a discussion). In Eq. (13), if only N points, for example,
are assumed to have non-zero source strength and n is assumed to vary from 0 to ðN � 1Þ; the
discrete Fourier spectrum of the sampled source strength distribution can be expressed in the form

Uzðe�j #krssÞ ¼
XN�1

n¼0

uzðnrssÞej
#knrss : ð14Þ

Now note that the spatial frequency range of #k between –k and k can be split into N samples for
evaluation of Uzðe�j #krssÞ at N specific values of spatial frequency with an increment of 2p=Nrss:
This in turn implies that 2p=Nrss ¼ 2k=N from which it follows that rss ¼ l=2 since k ¼ 2p=l:
Therefore, the Fourier spectrum at each of mð2p=NrssÞ values of the spatial frequency, where m is
the index associated with each discrete spatial frequency chosen, can be written as

Uzðe�jmð2p=NrssÞrssÞ ¼
XN�1

n¼0

uzðnrssÞejmð2p=NrssÞnrss : ð15Þ

Since Uzðe�j #krssÞ is determined by the number of samples in the data length chosen, the above
equation can be expressed as the discrete Fourier transform

UzðmÞ ¼
XN�1

n¼0

uzðnÞejð2pnm=NÞ; ð16Þ

where the inverse transform relationship is given by

uzðnÞ ¼
1

N

XN�1

m¼0

UzðmÞe�jð2pnm=NÞ: ð17Þ

Thus, using the discrete Fourier spectrum of the sampled source distribution in Eq. (16), the
farfield acoustic pressure in Eq. (9) can be written as

pðmÞ ¼
XN�1

n¼0

GDCðm; nÞuzðnÞ; ð18Þ

where it should be noted that the above pair of the discrete Fourier transform relationships
is valid only when rss ¼ l=2 and then the discrete form of the frequency response function
GDCðm; nÞ ð¼ GcðkRÞe�jð2pnm=NÞÞ becomes proportional to the Fourier matrix. In matrix form,
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the ðN � NÞ matrix GDC can be expressed by

GDC ¼ GcðkRÞW; ð19Þ

where the Fourier matrix W is given by

W ¼
1ffiffiffiffiffi
N

p

1 1 1 d d 1 1

1 w w2 d d wN�2 wN�1

1 w2 w4 d d w2ðN�2Þ w2ðN�1Þ

d d d d d d

d d d d d d

1 wN�2 wðN�2Þ2 d d wðN�2ÞðN�2Þ wðN�2ÞðN�1Þ

1 wN�1 wðN�1Þ2 d d wðN�1ÞðN�2Þ wðN�1ÞðN�1Þ

2
6666666666664

3
7777777777775
; ð20Þ

where w ¼ ejð2p=NÞ: The Fourier matrix W has singular values that are all unity and thus the
condition number of the Fourier matrixW is exactly unity. Furthermore, it is well known [21] that
the Fourier matrix W is unitary and has the property W�1 ¼WH:
In Fig. 12(a), when the hemi-cylindrical sensor array (here, the same number of sensors as

sources has been used) is placed in the farfield (e.g., when rms ¼ 103rss), the conditioning of the
matrix GDC is greatly improved when compared with the condition number variation for the
linear sensor array (Fig. 7). In particular, the conditioning of the matrix GDC becomes optimal
(i.e., has a condition number of unity) when rss=l ¼ 0:5; irrespective of the number of sources and
sensors assumed. It is also obvious that the inversion problem becomes increasingly ill-
conditioned as the wavelength of the radiated sound exceeds the separation of the acoustic sources
(i.e., rss=l ¼ 0:5 for the hemi-cylindrical sensor array). Of course, as illustrated in this figure, the
conditioning of the matrix GDC is also much improved by the adoption of the modified linear
sensor array depicted in Fig. 11, which is located at the distance R from the sources with the same
inter-sensor spacing rmm as that of the hemi-cylindrical sensor array. In contrast to the results for
the hemi-cylindrical sensor array, the problem becomes very poorly conditioned as the number of
the sources assumed increases and the conditioning of the matrix GDC is worse in a wide region of
rss=l compared with that for the hemi-cylindrical sensor array. However, since the hemi-
cylindrical sensor array will have the least sensitivities to contaminating errors when rss=l ¼ 0:5;
the array may be helpful in revealing far greater high-resolution information about the sources.
This may be the case in particular in uncertain circumstances which usually occur due to practical
difficulties in obtaining prior knowledge of either noise contamination or the source distribution.
Thus, Fig. 12(b) shows great improvement in the spatial resolution of the acoustic source
distribution (where, only one point monopole source at the centre of the line source array
consisting of 11 source models is assumed to have unit strength) from the farfield data with
optimally spaced sensors compared with that of Fig. 8(d). This is more clearly evident from Figs.
12(c) and (e) which illustrate that much greater resolution and accuracy of reconstruction is
produced with the hemi-cylindrical sensor array than shown by the results in Figs. 12(d) and (f)
that are produced by the linear sensor array under the same conditions (i.e., all acoustic and
geometrical conditions are the same except for the disposition of the sensor array).
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Furthermore, as illustrated in Fig. 13(a), the conditioning of the matrix GDC for the
hemi-cylindrical sensor array having 11 sensors is much improved, in particular in the region of
the wavelength of the radiated sound which exceeds the separation of the acoustic sources
(i.e., rss=l ¼ 0:5 for this case), when the number of sources assumed becomes smaller. There-
fore, for example, when the number of sources equals to 5, it is evident from Fig. 13(b) that
in this case the hemi-cylindrical sensor array produces better resolution of the acoustic
source distribution compared to that for the hemi-cylindrical sensor array with 11 sources
modelled.

3.4. Reconstruction from farfield data in the three-dimensional case

This analogy can be expanded to the three-dimensional sensor and source array. In the context
of the three-dimensional example with the planar source distribution depicted in Fig. 3 (where, the
M�N planar source array is assumed to have equal inter-source spacings rssx; and rssy;
respectively, in the x and y directions), the three-dimensional relationship between the spatial
Fourier transform of the farfield acoustic pressure and the spatial Fourier transform of the
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associated planar source distribution is given by Rayleigh’s first integral formula,

pðrÞ ¼ GsðkRÞ
Z

N

�N

Z
N

�N

uzðx; yÞejðkxxþkyyÞ dx dy; ð21Þ

where GsðkRÞ ¼ joroe
�jkR=2pR in the farfield (i.e., for kRb1) and kx; ky are given in terms of

spherical co-ordinates, i.e., kx ¼ k cos f sin y and ky ¼ k sin f sin y: This formula shows that the
farfield of any planar source is determined from the two-dimensional Fourier transform of its
normal velocity distribution.
As shown in Fig. 14, the field points in the farfield are assumed to be located on the hemisphere

of radius R and to have the same number as the sources in an assumed planar source array. Here,
the position of the sensor on the hemisphere is determined by the upward projection from the
specified position of the sensor on the source plane (i.e., z=0). The relations between the sensor
position on the hemisphere and the projected sensor position on the source plane can be defined
by the co-ordinates X ¼ R cos f sin y;Y ¼ R sin f sin y and Z ¼ R cos y: By using these
relationships, the exponential term in Eq. (21) can be written as

ejðkxxþkyyÞ ¼ ejðk cos f sin yxþk sin f sin yyÞ ¼ ejðkX=RÞxþðkY=RÞyÞ: ð22Þ

Similarly to the case of the hemi-cylindrical sensor array, the two-dimensional sampled velocity
distribution us;zðx; yÞ can be expressed as

us;zðx; yÞ ¼
XN�1

n¼0

XM�1

m¼0

uzðx; yÞdðx � mrssxÞdðy � nrssyÞ ð23Þ

and the two-dimensional discrete Fourier transform of the sampled source strength can be
expressed in the form

Uzðe�jkððmX=RÞrssxþðnY=RÞrssyÞÞ ¼
XM�1

m¼0

XN�1

n¼0

uzðm; nÞejkððmX=RÞrssxþðnY=RÞrssyÞ: ð24Þ

Here, assuming that the acoustic pressures are sampled at equal increments of X=R and Y=R (i.e.,
for example, X=R ¼ uXs and Y=R ¼ vYs where Xs ¼ Lx=M and Ys ¼ Ly=N in Fig. 14(b)), the
exponential term in Eq. (24) can be written as

ejkððmX=RÞrssxþðnY=RÞrssyÞ ¼ ejkðmuXsrssxþnvYsrssyÞ ¼ ejkððmuLx=RMÞrssxþðnvLy=RNÞrssyÞ ð25Þ

and the superscript term in Eq. (25) will become equal to j2pðmu=M þ nv=NÞ; provided that the
inter-source spacings rssx and rssy are equal to ðR=LxÞl and ðR=LyÞl; respectively.
Under these conditions, the final expression for the acoustic pressures in the farfield at each of

uð2pm=MÞ and vð2pn=NÞ values of the spatial frequency, where u and v are the indices associated
with each discrete spatial frequency chosen, can be written as

pðu; vÞ ¼
XM�1

m¼0

XN�1

n¼0

GDSðm; n; u; vÞuzðm; nÞ; ð26Þ

where the discrete form of the frequency response function GDSðm; n; u; vÞ is given by

GDSðm; n; u; vÞ ¼ GsðkRÞej2pðmu=MÞej2pðnv=NÞ: ð27Þ
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Eq. (26) exactly demonstrates a two-dimensional discrete Fourier transform relationship [7,22]
between the farfield pressure and the sampled source distribution. It should be emphasized that
the above relationship of the discrete Fourier transform holds only when the separation of
acoustic sources rssx and rssy are equal, respectively, to ðR=LxÞl and ðR=LyÞl:
In Eq. (26), now assume that m and u are discrete variables that range from 0 to ðM � 1Þ; and n

and v vary from 0 to ðN � 1Þ: Here, since pðu; vÞ and uzðm; nÞ can be row stacked to form column

ARTICLE IN PRESS

Modified planar sensor array

Hemi-spherical sensor array

z 
A sensor point on the hemisphere

R y 

θ  Z 

 
Source plane 

φ     
X 

Y 
x 

x

y

R

Xs

Ys

Lx

Ly

(a)

(b)

Fig. 14. The hemi-spherical sensor array with equal increments X=R and Y=R; and the modified planar sensor array

(for example, 5� 2 sensors and sources): (a) sensor points on the hemisphere of radius R; (b) projected positions of

sensors to the source plane.

Y. Kim, P.A. Nelson / Journal of Sound and Vibration 265 (2003) 583–608 603



vectors in order to use the same formulation as given by Eqs. (1) and (3), pðu; vÞ and uzðm; nÞ can
be formulated with ðMN � 1Þ acoustic pressure and source strength vectors. Hence, GDS can be
thought of as an ðMN � MNÞ block matrix WB having M rows of M blocks and each block
matrix is an ðN � NÞ sub-matrix W, which can be expressed as

GDS ¼ GsðkRÞWB; ð28Þ

where the block matrix WB is given by

WB ¼
1ffiffiffiffiffiffi
M

p
W½ � W½ � d W½ � W½ �

W½ � wm W½ � d wM�2
m W½ � wM�1

m W½ �

d d d d d

W½ � wM�2
m W½ � d wðM�2ÞðM�2Þ

m W½ � wðM�2ÞðM�1Þ
m W½ �

W½ � wM�1
m W½ � d wðM�1ÞðM�2Þ

m W½ � wðM�1ÞðM�1Þ
m W½ �

2
6666664

3
7777775
; ð29Þ

where wm ¼ ejð2p=MÞ and each ðN � NÞ sub-matrixW is equal to the Fourier matrix from Eq. (20).
The block matrix WB also has the same pattern of the Fourier matrix W and, interestingly, the
condition number is unity since all the singular values of the matrix WB are units. For example,
when the farfield acoustic pressures radiated from the discrete 3� 2 planar source distribution are
assumed to be measured by a hemi-spherical sensor array (also, assumed to be a 3� 2 array) and
the sources are spaced such that rssx ¼ R=Lx

� �
l and rssy ¼ R=Ly

� �
l; the discrete Fourier

transform relationship between row stacked forms of pðu; vÞ and uzðm; nÞ; Eq. (26) can be written
in full matrix form

pð0; 0Þ

pð0; 1Þ

pð1; 0Þ

pð1; 1Þ

pð2; 0Þ

pð2; 1Þ

2
6666666664

3
7777777775
¼

GsðkRÞffiffiffi
3

p W½ � W½ � W½ �

W½ � wm W½ � w2
m W½ �

W½ � w2
m W½ � w4

m W½ �

2
64

3
75

uzð0; 0Þ

uzð0; 1Þ

uzð1; 0Þ

uzð1; 1Þ

uzð2; 0Þ

uzð2; 1Þ

2
6666666664

3
7777777775
; ð30Þ

where the sub-matrix

W ¼
1ffiffiffi
2

p 1 1

1 w

" #
; w ¼ ejp and wm ¼ ej 2p=3ð Þ:

In order to understand better the implication of the optimally spaced sensor in the conditioning
of the matrix GDS in Eq. (28) and the spatial resolution of reconstruction from the farfield data
(for example, when rms ¼ 103rss), the planar sensor array in Fig. 3 has been revised based on the
above guideline for optimal sensor spacing. In other words, for example the hemi-spherical sensor
array, as an optimal sensor spacing, consists of the N�N sensors whose projection to the source
plane is a square of dimension L (i.e., when L ¼ Lx ¼ Ly) and the ðN � NÞ planar source array
(which has equal inter-spacing rss ¼ rssx ¼ rssy) assumed as shown in Fig. 3. In such cases, since
L=R ¼

ffiffiffi
2

p
(i.e., L ¼ 2R cos 451), the separation of the acoustic sources rss must be equal to l=

ffiffiffi
2

p
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in order to ensure the two-dimensional discrete Fourier transform relation between the acoustic
pressure in the farfield and the N�N source distribution.
Similarly to the two-dimensional case, the problem does not become optimally conditioned as

shown in Fig. 15(a) even when using a planar type of sensor array as depicted in Fig. 14. This has
the same inter-sensor spacing rmm as that of the hemi-spherical sensor array, but the conditioning
of the matrix GDS for the modified planar sensor array becomes much poorer as the number of
sensors and sources assumed increases. However, by the adoption of the hemi-spherical sensor
array, the conditioning of the matrix GDS becomes optimal when rss ¼ l=

ffiffiffi
2

p
(when rms ¼ 103rss),

irrespective of any range of ðN � NÞ sources and sensors assumed, and is also greatly improved
compared with the condition number variation of the planar sensor array of Fig. 9. Therefore, as
shown in Fig. 15(b), very good spatial resolution of the reconstructed source distribution from the
farfield data can be produced by the optimally spaced farfield sensor array when compared with
that of Fig. 10(d), where the same planar source array as that depicted in Fig. 3 (i.e., 9� 9 sensor
and source array) has been used and only one point monopole source located at the centre of the
source array is assumed to have unit strength. From the practical point of view, great resolution
and accuracy of reconstruction produced by the hemi-spherical sensor array can be seen in Figs.
15(c) and (e) compared with Figs. 15(d) and (f) for the planar sensor array under the same
conditions.
Also in the three-dimensional case, as the number of sources assumed decreases, the

conditioning of the matrix GDS for the hemi-spherical sensor array is obviously improved even
when the wavelength of the radiated sound exceeds the separation of the acoustic sources as
shown in Fig. 16(a). This results in greater improvement in the spatial resolution of the acoustic
source distribution as illustrated in Fig. 16(b) when using 5� 5 planar sources, compared with
that for 9� 9 planar sources in Fig. 15(b).

4. Conclusions

In this paper, Tikhonov regularization with the GCV technique has been applied to discrete
inverse source problems in acoustics. It has been shown that GCV can determine proper
regularization parameters in the cases investigated without prior knowledge of either the acoustic
sources or the contaminating measurement noise for a wide range of conditions. However, in spite
of the proper choice of the regularization parameter by the use of GCV, it has been shown that a
successful reconstruction with fine resolution and reasonable accuracy cannot always be
guaranteed. The limits of resolution of a number of practical source/sensor geometries have
been identified by exploring the important relations between the spatial resolution, the accuracy of
reconstruction and the acoustic measurement conditions. The Abbe distance has been introduced
as a measure of the spatial resolution. Generally, it has been known that spatial resolution limits
can be overcome by undertaking measurements in the field close to sources. However, it has also
been shown that great improvement in spatial resolution of acoustic source distribution can be
achieved when sensor and source geometry is optimally arranged, even when the sensor array has
been completely deployed to the farfield. Furthermore, in principle, super-resolution beyond the
half-wavelength limit appears possible when the strengths of a relatively small number of the
sources are reconstructed with the optimally spaced sensors proposed. In practice, however, the
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Fig. 15. The spatial resolution limits for the hemi-spherical sensor array, when R ¼ 103rss: (a) variation of the condition

number for the hemi-spherical sensor array (solid line) and the modified planar sensor array (dotted line); (b) variation

of the Abbe distance for the hemi-spherical sensor array (9� 9 sources and sensors); (c) reconstructed source strengths

produced by the hemi-spherical sensor array (9� 9 sources and sensors), when rss=l ¼ 0:5; Er ¼ 0:5; (d) reconstructed
source strengths produced by the planar sensor array (9� 9 sources and sensors), when rss=l ¼ 0:5; Er ¼ 0:5; (e)
reconstructed source strengths produced by the hemi-spherical sensor array (9� 9 sources and sensors), when rss=l ¼
0:3; Er ¼ 10�3; (f) reconstructed source strengths produced by the planar sensor array (9� 9 sources and sensors), when

rss=l ¼ 0:3; Er ¼ 10�3:
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signal-to-noise ratios associated with real measurement systems and practical numbers of the
sources are unlikely to allow resolution that is significantly beyond the half-wavelength limit.
These may become important guidelines for reconstructing acoustic source distributions in
practical applications.
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